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~ it is predicted that volume absorption is the dominant contributor to the
anisotropic character of the noise field. In shallow water, it is shown that
the received noisce levels are limited primarily by two ¢nvironmental parameters
ol the ocean: (1) sound speed profile and (2) bottom porosity.
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SENSITIVITY OF HIGH FREQUENCY SURFACE- GENERATED
NOISE TO SONAR AND ENVIRONMENTAL PARAMETERS

INTRODUCTION

Currently, many sonar systems use Knudsen curves! to predict ambient

A . e 0 pr
32 noise 1levels pecause these curves allow for variations in wind speed and
" shipping density at a fixed acoustic frequency. However, this method does
not provide the capability of investigating the effects on noise due to
5 - changes in other sonar and environmental parameters, such as sonar beam
:#; elevation angle, receiver depth, water depth, bottom porosity, and sound
::ﬁ speed profile (SSP). For example, changes 1in either sonar beam
;g;, directionality or SSP do not result in changes to predicted ambient noise
~¥¢* levels when the Knudsen model is used.
.2 This paper will investigate the sensitivity of high frequency (> 6 kHz)
e surface-generated sea noise to sonar and environmental parameters. A
00N procedure that simulates the effect of noise originating et the ocean
$}3 surface has been developed and incorporated in the Generic Sonar Model
M (GSM).2? The noise levels predicted by this model include the effects of

directionality and multipath propagation in realistic ocean environments.

;:g The model is demonstrated when typical sonar parameters in several
\}f environments, including deep and shallow water, are varied. The results
' indicate that the received ambient noise is highly sensitive to variations

4 in these parameters.

Ay
-~ MODEL DESCRIPTION

\ﬂ

o

I Ambient noise in the ocean has many sources, including surface
- agitation, shipping, thermal effects, and sea life. However, because noise
“ produced by surface agitation is dominant in the frequencies of interest (6
.}Q to 60 kHz), the model assumes that all noise originates at the sea surface.
:~ Originally developed by McConnell® at the Applied Physics Laboratory of
‘”'t the University of Washington, the model was used in conjunction with Lhe
LY NISSM I1 computer program.® The current version, incorporated in the GSM,
T allows a wide choice of supporting submodels for the computation of
f_’ eigenrays, bottom reflection coefficients, and volume absorption.

N

E;: The model equation used to calculate the received ambient noise level
) is given by

n"*

AN

= Pp=A [f N(8g)a(R)h(R)b.(Y)RARd$ ,
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AN where
. ,' \J
f* Pe = received noise power intensity, in micropascals?/hertz,
\
; A = scale factor that is a function of frequency and wind speed,
,ix in micropascals?/hertz/steradian,
Yot
ju N = surface radiation pattern,
A
. Og = surface grazing angle,
' 4
% b =  receiver beam pattern, ]
)
;a R = horizontal range between sonar and surface element,
N ¢ = azimuthal angle relative to beam axis,
b L
’S a = absorption loss to surface element,
o
L h = spreading loss to surface element, and
A
A Y = angle off beam axis.
).\
r} The scaling function, A, refers to the noise level at the surface of the
I ocean.® With increasing range, this level is attenuated because of the
i: propagation loss terms. The surface radiators, represented by the function
> N(©6g), are assumed to be distributed uniformly along the ocean surface.
i The absorption loss, a, and spreading loss, h, are computed by means of
2 eigenray routines selected from the GSM.?
>
:é Figure 1 schematically describes the noise model. Although the ray
u; paths linking the surface radiators and receiver are depicted as straight
»l lines, the simulation model accounts for the effects of refraction.
Therefore, in realistic cases, the rays would undergo some bending.
o RESULTS
- The results of this investigation show predictions based on the ambient !
,;t noise model in both deep and shallow-water oceans. Within a particular .
-, ocean, the effect on the noise level is examined when the following i
g parameters are varied: beam elevation angle, receiver depth, bottom
N porosity, and salinity. The predictions are based on a frequency of 23.5
éf kHz. The beam has a width of 18 degrees and is assumed to be symmetric. A
e 13 knot wind speed was selected because that speed represents the average of
o the world oceans. A sin?0 function represents patterns of the surface
:{ radiators because that function fits measured data closely at the high
,: frequencies. Note that this dipole function is a very important contributor
\} to the anisotropic characteristic of the noise field.
-
‘ Figure 2 presents predictions of received noise level versus sonar beam 1
2] elevation angle for ocean depths of 200, 650, and 2000 m. The receiver is !
fj fixed at 100 m. A bottom porosity of 0.4 (sand) is assumed. To eliminate 3
1
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f:' the influence of refraction, the ocean sound spced is constant with deplh.
f}: It can be seen that the noise field below the horizontal is significantly
o smaller than the field above the horizontal for the deeper oceans. This
i i decrease in noise for the downward looking beams reflects the dominant role
Qg that volume absorption plays at these high frequencies. That is, the bottom
.ﬁs reflection loss is small in comparison with the absorption effect because a
j{b sandy bottom is a good reflector of sound, particularly at the lower grazing
}: _ angles. However, the results in shallow water are significantly different
:g than those in deep water. This difference, which can be attcributed to the
relatively unattenuated noise arriving along the bottom bounce paths,
s illustrates the importance of multipaths in shallow water  noise
.=\ predictions. As shown in figure 2, the curve of the noise levels predicted
“:3: by the Knudsen model is independent of the parameters considered here.
}2% Figures 3 and 4 contain the SSP's that illustrate the importance of
h this parameter in deep water noise predictions. The profile shown in figure
A 3 1is characterized by a deep surface duct (layer depth of 251 m). In
s contrast, figure 4 shows the sccond profile with a relatively shallow layer
Egl (49 m) followed by a steep thermocline region.
S
(f' Figures 5 and 6 show the effects of variations in receiver depth on
noise level when the deep water profiles shown in figures 3 and 4,
$\' respectively. are used. Because of the high 1losses due to volume
;:3 attenuation, it is expected that the ambient noise level will decrease with
;«j increasing receiver depth, as shown in figure 5. Note that the variation in
::: level 1is independent of beam elevation angle, except for the steeper
.jﬂ: upward- looking angles of the 30-m receiver, where the curve is higher
( because of the greater returns from the sin?0 radiation pattern.
:f} Figure 6 contains results for an ocean with the same depth (6000 m),
:Qf but with a relatively shallow layer (49 m). The lower noise levels for the
e 200-m curve (compared with the deep layer case) illustrate the effect of the
oNy layer (and accompanying steep thermocline) on refraction and, thus, on
) received noise. It should be noted that for the shallow layer result, the
~ 200-m receiver is below the layer and, therefore, suffers from the strong
jﬁg downward refraction of the thermocline, whereas, in the previous result, the
‘f:ﬁ 200-m receiver was within the layer. In comparison, figure 7 shows the
}:: results for an isovelocity ocean.
Na-
jtﬁ In figure 8, the importance of bottom porosity as a factor of noise
.;t. reception in shallow water oceans (200 m) is shown. The received noise
e versus beam elevation angle is compared for bottom porosities of 0.4, 0.6
:r: and 0.9. The receiver is at 100 m and the ocean sound speed is constant
e with depth. Because bottom loss is a parameter used to scale propagation
'%: . logs, it is not surprising that the noise curves for the more porous bottoms
NO: fall off measurably when the sonar beam is directed downward, as shown
N here. Thus, in shallow water where absorption is not an influential factor, ‘
o the contribution from bottom bounce paths can significantly affect the noise !
b field. |
el Figure 9 indicates that the effect of variable salinity is not large
é" for the steeper surface-directed beams; the difference between curves based
o on salinity extremes of 21 and 45 parts per thousand does not exceed 2 dB.
;it When the beam is depressed downward, however, a 4 dB variation in Lhe noise
“
?’: 3
‘:
%

.’
3
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level occurs. This difference illustrates the importance of salinity for
predictions made in shallow water where salinity content can vary
significantly.

Figure 10 compares the received noise levels for two shallow water
oceans: (1) an isovelocity ocean and (2) the Gulf of Maine (figure 11).
The noise curve corresponding to the Gulf of Maine profile clearly shows the
sensitivity of received noise to refraction. Note that if a steeper set of
angles (i.e., |6} > 30°) had been included, the noise curves for the
Gulf of Maine would have increased or decreased (depending on the amount of
bottom loss suffered), because the steeper angle would have overcome the
effects of refraction. Figure 12, which shows the ray diagram for the Gulf
of Maine based on a 91-m receiver, illustrates the highly shadowed surface.

[ CONCLUSI1ONS
'.\ I
.,:T::‘
R The selected frequency of 23.5 kHz for this study results in noise
{k: level predictions that are highly sensitive to ocean depth. 1In deep water
) oceans, a large decrease in the noise signal below the horizontal occurs.
- This loss is due to the dominance of volume absorption caused by the longer
-du: ray paths required to link the receiver and noise source between the ocean
:y:. bottom and the surface. Specifically, the following observations were made:
el
{%;- *+ When receiver depth is fixed, the noise level falls off
o sharply below the horizontal.
L
itd * When receiver depth for a fixed sonar beam angle is varied,
'*ti the noise level decreases with increasing receiver depth.
¢
S *» When water depth is varied, the noise level is not affected
B if beam angle and receiver depth are held constant.
~a,
f:; In shallow water oceans, for a fixed wind speed, it is predicted that
-ﬁ\j the received noise levels are limited predominantly by two environmental
.azi parameters: SSP and bottom porosity. Changes in the SSP can affect the
. o directionality of noise. Most striking 1is the case of an extreme
o surface- shadowed environment, where only the steepest ray paths reach the
:vﬁ surface. The ocean bottom can be an excellent reflector of sound and, thus,
o noise. However, increasing bottom porosity yields a decrease in received
~ N
o0K noise levels at angles below the horizontal.
\ ’
h .«.ﬂ'
L) Based on the results of this study, it is expected that this noise
JTC: model will play a significant role in system performance predictions,
'}2: particularly at the higher sonar frequencies.
..’
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'i: Figure 1. Ocean Model for Surface-Generated Ambient Noise Predictions
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Figure 2. Ambient Noise vs. Beam Elevation Angle, With Receiver Depth
” of 100 m and Water Depths of 200, 650, and 2000 m
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Figure 3.

Figure 4.
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